ÌâÄ¿ÄÚÈÝ
£¨2013•¾²°²Çøһģ£©ÒÑÖªÍÖÔ²
+
=1µÄÁ½¸ö½¹µãΪF1£¨-c£¬0£©¡¢F2£¨c£¬0£©£¬c2ÊÇa2Óëb2µÄµÈ²îÖÐÏÆäÖÐa¡¢b¡¢c¶¼ÊÇÕýÊý£¬¹ýµãA£¨0£¬-b£©ºÍB£¨a£¬0£©µÄÖ±ÏßÓëÔµãµÄ¾àÀëΪ
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¹ýµãA×÷Ö±Ïß½»ÍÖÔ²ÓÚÁíÒ»µãM£¬Çó|AM|³¤¶ÈµÄ×î´óÖµ£»
£¨3£©ÒÑÖª¶¨µãE£¨-1£¬0£©£¬Ö±Ïßy=kx+tÓëÍÖÔ²½»ÓÚC¡¢DÏàÒìÁ½µã£®Ö¤Ã÷£º¶ÔÈÎÒâµÄt£¾0£¬¶¼´æÔÚʵÊýk£¬Ê¹µÃÒÔÏ߶ÎCDΪֱ¾¶µÄÔ²¹ýEµã£®
x2 |
a2 |
y2 |
b2 |
| ||
2 |
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¹ýµãA×÷Ö±Ïß½»ÍÖÔ²ÓÚÁíÒ»µãM£¬Çó|AM|³¤¶ÈµÄ×î´óÖµ£»
£¨3£©ÒÑÖª¶¨µãE£¨-1£¬0£©£¬Ö±Ïßy=kx+tÓëÍÖÔ²½»ÓÚC¡¢DÏàÒìÁ½µã£®Ö¤Ã÷£º¶ÔÈÎÒâµÄt£¾0£¬¶¼´æÔÚʵÊýk£¬Ê¹µÃÒÔÏ߶ÎCDΪֱ¾¶µÄÔ²¹ýEµã£®
·ÖÎö£º£¨1£©ÀûÓÃc2ÊÇa2Óëb2µÄµÈ²îÖÐÏ¿ÉµÃc2=a2-b2=
£¬Éè³öÖ±Ïß·½³Ì£¬ÀûÓÃÖ±ÏßÓëÔµãµÄ¾àÀëΪ
£¬½¨Á¢µÈʽ£¬Çó³ö¼¸ºÎÁ¿£¬¼´¿ÉÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèMµÄ×ø±ê£¬±íʾ³ö|AM|2£¬¼´¿ÉÇó|AM|³¤¶ÈµÄ×î´óÖµ£»
£¨3£©Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°ÒÔCDΪֱ¾¶µÄÔ²¹ýEµã£¬½áºÏÏòÁ¿ÖªÊ¶£¬¼´¿ÉµÃµ½½áÂÛ£®
a2+b2 |
2 |
| ||
2 |
£¨2£©ÉèMµÄ×ø±ê£¬±íʾ³ö|AM|2£¬¼´¿ÉÇó|AM|³¤¶ÈµÄ×î´óÖµ£»
£¨3£©Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°ÒÔCDΪֱ¾¶µÄÔ²¹ýEµã£¬½áºÏÏòÁ¿ÖªÊ¶£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º£¨1£©½â£ºÔÚÍÖÔ²ÖУ¬ÓÉÒÑÖªµÃc2=a2-b2=
£¨1·Ö£©
¹ýµãA£¨0£¬-b£©ºÍB£¨a£¬0£©µÄÖ±Ïß·½³ÌΪ
+
=1£¬¼´bx-ay-ab=0£¬
¸ÃÖ±ÏßÓëÔµãµÄ¾àÀëΪ
£¬Óɵ㵽ֱÏߵľàÀ빫ʽµÃ£º
=
£¨3·Ö£©
½âµÃ£ºa2=3£¬b2=1£¬ËùÒÔÍÖÔ²·½³ÌΪ
+
=1£¨4·Ö£©
£¨2£©½â£ºÉèM£¨x£¬y£©£¬Ôòx2=3£¨1-y2£©£¬|AM|2=x2+£¨y+1£©2=-2y2+2y+4£¬ÆäÖÐ-1¡Üy¡Ü1£¨16·Ö£©
µ±y=
ʱ£¬|AM|2È¡µÃ×î´óÖµ
£¬ËùÒÔ|AM|³¤¶ÈµÄ×î´óֵΪ
£¨9·Ö£©
£¨3£©Ö¤Ã÷£º½«y=kx+t´úÈëÍÖÔ²·½³Ì£¬µÃ£¨1+3k2£©x2+6ktx+3t2-3=0£¬
ÓÉÖ±ÏßÓëÍÖÔ²ÓÐÁ½¸ö½»µã£¬ËùÒÔ¡÷=£¨6kt£©2-12£¨1+3k2£©£¨t2-1£©£¾0£¬½âµÃk2£¾
£¨11·Ö£©
ÉèC£¨x1£¬y1£©¡¢D£¨x2£¬y2£©£¬Ôòx1+x2=-
£¬x1•x2=
£¬
ÒòΪÒÔCDΪֱ¾¶µÄÔ²¹ýEµã£¬ËùÒÔ
•
=0£¬¼´£¨x1+1£©£¨x2+1£©+y1y2=0£¬£¨13·Ö£©
¶øy1y2=£¨kx1+t£©£¨kx2+t£©=k2x1x2+tk(x1+x2)+t2£¬
ËùÒÔ(k2+1)
-(tk+1)
+t2+1=0£¬½âµÃk=
£¨14·Ö£©
Èç¹ûk2£¾
¶ÔÈÎÒâµÄt£¾0¶¼³ÉÁ¢£¬Ôò´æÔÚk£¬Ê¹µÃÒÔÏ߶ÎCDΪֱ¾¶µÄÔ²¹ýEµã£®(
)2-
=
£¾0£¬¼´k2£¾
£®
ËùÒÔ£¬¶ÔÈÎÒâµÄt£¾0£¬¶¼´æÔÚk£¬Ê¹µÃÒÔÏ߶ÎCDΪֱ¾¶µÄÔ²¹ýEµã£®£¨16·Ö£©
a2+b2 |
2 |
¹ýµãA£¨0£¬-b£©ºÍB£¨a£¬0£©µÄÖ±Ïß·½³ÌΪ
x |
a |
y |
-b |
¸ÃÖ±ÏßÓëÔµãµÄ¾àÀëΪ
| ||
2 |
ab | ||
|
| ||
2 |
½âµÃ£ºa2=3£¬b2=1£¬ËùÒÔÍÖÔ²·½³ÌΪ
x2 |
3 |
y2 |
1 |
£¨2£©½â£ºÉèM£¨x£¬y£©£¬Ôòx2=3£¨1-y2£©£¬|AM|2=x2+£¨y+1£©2=-2y2+2y+4£¬ÆäÖÐ-1¡Üy¡Ü1£¨16·Ö£©
µ±y=
1 |
2 |
9 |
2 |
3
| ||
2 |
£¨3£©Ö¤Ã÷£º½«y=kx+t´úÈëÍÖÔ²·½³Ì£¬µÃ£¨1+3k2£©x2+6ktx+3t2-3=0£¬
ÓÉÖ±ÏßÓëÍÖÔ²ÓÐÁ½¸ö½»µã£¬ËùÒÔ¡÷=£¨6kt£©2-12£¨1+3k2£©£¨t2-1£©£¾0£¬½âµÃk2£¾
t2-1 |
3 |
ÉèC£¨x1£¬y1£©¡¢D£¨x2£¬y2£©£¬Ôòx1+x2=-
6kt |
1+3k2 |
3(t2-1) |
1+3k2 |
ÒòΪÒÔCDΪֱ¾¶µÄÔ²¹ýEµã£¬ËùÒÔ
EC |
ED |
¶øy1y2=£¨kx1+t£©£¨kx2+t£©=k2x1x2+tk(x1+x2)+t2£¬
ËùÒÔ(k2+1)
3(t2-1) |
1+3k2 |
6kt |
1+3k2 |
2t2-1 |
3t |
Èç¹ûk2£¾
t2-1 |
3 |
2t2-1 |
3t |
t2-1 |
3 |
(t2-1)2+t2 |
9t2 |
t2-1 |
3 |
ËùÒÔ£¬¶ÔÈÎÒâµÄt£¾0£¬¶¼´æÔÚk£¬Ê¹µÃÒÔÏ߶ÎCDΪֱ¾¶µÄÔ²¹ýEµã£®£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿