题目内容
【题目】若P为椭圆 =1上任意一点,F1 , F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5﹣ |PF1|;
(2)若∠F1PF2=60°,求|PF1||PF2|之值;
(3)椭圆上是否存在点P,使 =0,若存在,求出P点的坐标,若不存在,试说明理由.
【答案】
(1)证明:在△F1PF2中,MO为中位线,
∴|MO|= =
=a﹣ =5﹣ |PF1|
(2)解:∵|PF1|+|PF2|=10,
∴|PF1|2+|PF2|2=100﹣2|PF1||PF2|,
在△PF1F2中,cos 60°= ,
∴|PF1||PF2|=100﹣2|PF1||PF2|﹣36,
∴|PF1||PF2|= .
(3)解:设点P(x0,y0),则 .①
易知F1(﹣3,0),F2(3,0),故 =(﹣3﹣x0,﹣y0), =(3﹣x0,﹣y0),
∵ =0,
∴x ﹣9+y =0,②
由①②组成方程组,此方程组无解,故这样的点P不存在.
【解析】(1)在△F1PF2中,MO为中位线,根据三角形的中位线定理再结合椭圆的定义即可得出答案;(2)先利用椭圆的定义得到:|PF1|+|PF2|=10,再在△PF1F2中利用余弦定理得出cos 60°= ,两者结合即可求得|PF1||PF2|;(3)先设点P(x0 , y0),根据椭圆的性质,易知F1(﹣3,0),F2(3,0),写出向量的坐标再结合向量垂直的条件得出关于P点坐标的方程组,由此方程组无解,故这样的点P不存在.
【考点精析】通过灵活运用椭圆的标准方程,掌握椭圆标准方程焦点在x轴:,焦点在y轴:即可以解答此题.
练习册系列答案
相关题目