题目内容
(1)证明:cos(α-β)=cosα•cosβ+sinα•sinβ
(2)若0<α<
,-
<β<0,cos(
+α)=
,cos(
-
)=
,求cos(α+
)的值.
(2)若0<α<
π |
2 |
π |
2 |
π |
4 |
1 |
3 |
π |
4 |
β |
2 |
| ||
3 |
β |
2 |
(1)证明:在平面直角坐标系xOy内作单位圆O,
以Ox为始边作角α,β,它们的终边与单位圆O的交点分别为A,B.
则
=(cosα,sinα),
=(cosβ,sinβ).
则
•
=cosαcosβ+sinαsinβ.
设
与
的夹角为θ,则
•
=|
||
|cosθ=cosθ=cosαcosβ+sinαsinβ.
另一方面,由α=2kπ+β+θ,或α=2kπ+β-θ.
∴α-β=2kπ±θ,k∈Z.
∴cos(α-β)=cosθ.
∴cos(α-β)=cosαcosβ+sinαsinβ.
(2)∵0<α<
,cos(
+α)=
,∴
<α+
<
,∴sin(α+
)=
=
.
∵-
<β<0,∴
<
-β<
,∵cos(
-
)=
,∴sin(
-
)=
=
.
∴cos(α+
)=cos[(
+α)-(
-
)]=cos(
+α)cos(
-
)+sin(
+α)sin(
-
)
=
×
+
×
=
.
以Ox为始边作角α,β,它们的终边与单位圆O的交点分别为A,B.
则
OA |
OB |
则
OA |
OB |
设
OA |
OB |
OA |
OB |
OA |
OB |
另一方面,由α=2kπ+β+θ,或α=2kπ+β-θ.
∴α-β=2kπ±θ,k∈Z.
∴cos(α-β)=cosθ.
∴cos(α-β)=cosαcosβ+sinαsinβ.
(2)∵0<α<
π |
2 |
π |
4 |
1 |
3 |
π |
4 |
π |
4 |
π |
2 |
π |
4 |
1-cos2(α+
|
2
| ||
3 |
∵-
π |
2 |
π |
4 |
π |
4 |
3π |
4 |
π |
4 |
β |
2 |
| ||
3 |
π |
4 |
β |
2 |
1-cos2(
|
| ||
3 |
∴cos(α+
β |
2 |
π |
4 |
π |
4 |
β |
2 |
π |
4 |
π |
4 |
β |
2 |
π |
4 |
π |
4 |
β |
2 |
=
1 |
3 |
| ||
3 |
2
| ||
3 |
| ||
3 |
=
5
| ||
9 |
练习册系列答案
相关题目