题目内容

在△ABC中,sinA=4cosB•cosC,且tanB•tanC=3,
(1)求角A的余弦值;
(2)若角A所对的边a长为4,求△ABC的面积.
(1)在△ABC中,sinA=4cosB•cosC,故 sinA=sin(B+C)=sinBcosC+cosBsinC=4cosBcosC,
两边同除cosBcosC可得 tanB+tanC=4.
再由 tanB•tanC=3,可得 tan(B+C)=
tanB+tanC
1-tanBtanC
=-2,故 tanA=
sinA
cosA
=2,故A为锐角.
再由 sin2A+cos2A=1,可得sinA=
2
5
5
,cosA=
5
5

(2)若角A所对的边a长为4,不妨设B>C,则由(1)中 tanB+tanC=4、tanB•tanC=3,可得tanB=3,tanC=1,
故sinB=
3
10
10
,sinC=
2
2

由正弦定理可得
4
5
5
=
b
3
10
10
=
c
2
2
,由此求得b=6
2
,c=2
10
,故△ABC的面积为
1
2
•bc•sinA
=12.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网