题目内容
【题目】现有一长为100码,宽为80码,球门宽为8码的矩形足球运动场地,如图所示,其中是足球场地边线所在的直线,球门处于所在直线的正中间位置,足球运动员(将其看做点)在运动场上观察球门的角称为视角.
(1)当运动员带球沿着边线奔跑时,设到底线的距离为码,试求当为何值时最大;
(2)理论研究和实践经验表明:张角越大,射门命中率就越大.现假定运动员在球场都是沿着垂直于底线的方向向底线运球,运动到视角最大的位置即为最佳射门点,以的中点为原点建立如图所示的直角坐标系,求在球场区域内射门到球门的最佳射门点的轨迹.
【答案】(1) (2)见解析
【解析】
(1)要求得最大,只需最大,利用,将其展开后表示为关于x的函数,利用基本不等式求得最值.
(2)设点,其中,,将表示为关于x、y的函数,利用基本不等式求得取到最值时的条件,得到关于x,y的方程即为点的轨迹..
(1)
,
当且仅当,即时,取得最大值,
又在上单调递增,∴当取得最大值时,最大,
∴,取得最大值;
(2)过点作于,设点,其中,,
∴
,
当且仅当,即时,取得最大值,
此时轨迹方程为,
其表示焦点为,实轴长为8的等轴双曲线在的一部分.
【题目】某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据
年份编号x | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
加装户数y | 34 | 95 | 124 | 181 | 216 |
(Ⅰ)若有意向加装暖气的户数y与年份编号x满足线性相关关系求y与x的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;
(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:
(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;
(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)
参考公式对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线的斜率和截距的最小二乘估计分别为,