题目内容
【题目】某学校为更好进行校纪、校风管理,争创文明学校,由志愿者组成“小红帽”监督岗,对全校的不文明行为进行监督管理,对有不文明行为者进行批评教育,并作详细的登记,以便跟踪调查下表是个周内不文明行为人次统计数据:
周次 | |||||
不文明行为人次 |
(1)请利用所给数据求不文明人次与周次之间的回归直线方程,并预测该学校第周的不文明人次;
(2)从第周到第周记录得知,高一年级有位同学,高二年级有位同学已经有次不文明行为.学校德育处决定先从这人中任选人进行重点教育,求抽到的两人恰好来自同一年级的概率
参考公式:,
【答案】(1),49;(2).
【解析】
(1)由所给公式计算回归直线方程中的系数,得方程,代入得估计值;
(2)把6人编号,用列举法列出任选2人的所有基本事件,然后得出2人是同一年级的基本事件,计数后可求概率.
解:由表中数据知,
所求回归直线方程为
令,则
该学校第周的不文明人次为人次,
设高一年级的位同学的编号分别为.高二年级的位同学的编号分别为
从这人中任选人包食以下基本事件:
共个基本事件,其中两人恰好来自同一年级包含个基本事件,
所求概率
【题目】某种植物感染病毒极易导致死亡,某生物研究所为此推出了一种抗病毒的制剂,现对株感染了病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:)进行统计规定:植株吸收在(包括)以上为“足量”,否则为“不足量”.现对该株植株样本进行统计,其中“植株存活”的株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共株.
编号 | ||||||||||||||||||||
吸收量 |
(1)完成以下列联表,并判断是否可以在犯错误概率不超过的前提下,认为“植株的存活”与“制剂吸收足量”有关?
吸收足量 | 吸收不足量 | 合计 | |
植株存活 | |||
植株死亡 | |||
合计 |
(2)若在该样本“制剂吸收不足量”的植株中随机抽取株,求这株中恰有株“植株存活”的概率.
参考数据:
,其中
【题目】中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分旧井,取得了地质资料.进入全面勘探时期后集团按网络点来布置井位来进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见下表:
井位 | 1 | 2 | 3 | 4 | 5 | 6 |
坐标 | ||||||
钻探深度 | 2 | 4 | 5 | 6 | 8 | 10 |
出油量 | 40 | 70 | 110 | 90 | 160 | 205 |
(1)若16号旧井位置满足线性分布,借助前5组数据所求得的回归直线方程为,且,求,并估计的预报值;
(2)现准备勘探新井7(1,25),若通过,1,3,5,7号井计算出的,的值与(1)中,的值的差不超过10%,则使用位置最接近的旧井,否则在新位置打井,请判断可否使用旧井?(注:其中的计算结果用四舍五入法保留一位小数)
参考数据:
参考公式: