题目内容
【题目】为弘扬民族古典文化,市电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10分,否则记负10分.根据以往统计,某参赛选手能答对每一个问题的概率均为;现记“该选手在回答完个问题后的总得分为”.
(1)求且()的概率;
(2)记,求的分布列,并计算数学期望.
【答案】(1);(2).
【解析】
试题本题属于独立重复试验问题,求概率的关键是发生的次数,(1),说明回答个问题后,正确个,错误个.要满足,则第一题回答正确,第2题如果正确,则后面4题2对2错,第2题如果错误,则第3题正确,后面3题2对1错,由此可计算出概率;(2)由可知的取值为.按概率公式计算概率可得分布列,可计算出数学期望.
试题解析:(1)当时,即回答个问题后,正确个,错误个. 若回答正确个和第个问题,则其余个问题可任意回答正确个问题;若第一个问题回答正确,第个问题回答错误,第三个问题回答正确,则其余三个问题可任意回答正确个.
故所求概率为:.
(2)由可知的取值为.
,.
故的分布列为:
.
练习册系列答案
相关题目