题目内容
【题目】已知是椭圆与抛物线的一个公共点,且椭圆与抛物线具有一个相同的焦点.
(1)求椭圆及抛物线的方程;
(2)设过且互相垂直的两动直线,与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值
【答案】(Ⅰ)椭圆的方程为,抛物线的方程为;(Ⅱ)见解析.
【解析】
(1)先求 ,即得c,再将点P坐标代入椭圆方程,解方程组得a,b,即得结果,(2)根据垂直条件得,设直线的方程,与椭圆方程联立方程,结合韦达定理以及弦长公式解得AB,类似可得CD,最后根据二次函数性质求最值.
(Ⅰ)抛物线:一点
,即抛物线的方程为,
又在椭圆:上
,结合知(负舍), ,
椭圆的方程为,抛物线的方程为.
(Ⅱ)由题可知直线斜率存在,设直线的方程,
①当时,,直线的方程,,故
②当时,直线的方程为,由得.
由弦长公式知 .
同理可得.
.
令,则,当时,,
综上所述:四边形面积的最小值为8.
练习册系列答案
相关题目