题目内容
【题目】在平面直角坐标系中,点M到点的距离比它到轴的距离大2,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)若直线与轨迹C恰有2个公共点,求实数b的取值范围.
【答案】(1);(2)
【解析】
(1)设,根据动点满足的几何性质得到,化简后可得轨迹方程.
(2)轨迹由抛物线和射线构成,故直线与抛物线有两个交点或与抛物线、射线各有一个交点,联立直线方程和抛物线线方程后利用判别式可求的取值范围.
(1)设轨迹上的动点,则由题意,,∴,∴轨迹的方程为.
(2)轨迹与直线有两个交点,等价于
①直线与,各有一个交点或
②直线与有两个交点,且与没有交点,
由得,
由①得此方程有两个相等的根即,∴ .
由②得:当时,方程有两个不等非正根,
故 ,∴,
∴直线与轨迹恰有二个公共点时的范围是
【题目】2017年春晚分会场之一是凉山西昌,电视播出后,通过网络对凉山分会场的表演进行了调查.调查分三类人群进行,参加了网络调查的观众们的看法情况如下:
观众对凉山分会场表演的看法 | 非常好 | 好 |
中国人且非四川(人数比例) | ||
四川人(非凉山)(人数比例) | ||
凉山人(人数比例) |
(1)从这三类人群中各选一个人,求恰好有2人认为“非常好”的概率(用比例作为相应概率);
(2)若在四川人(非凉山)群中按所持态度分层抽样,抽取9人,在这9人中任意选取3人,认为“非常好”的人数记为ξ,求ξ的分布列和数学期望.
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.
【题目】张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如表:
年龄 (岁) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高 (cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高y关于年龄x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
= , .