题目内容
【题目】如图,曲线与正方形: 的边界相切.
(1)求的值;
(2)设直线交曲线于,交于,是否存在这样的曲线,使得, , 成等差数列?若存在,求出实数的取值范围;若不存在,请说明理由.
【答案】(1) (2)
【解析】试题分析:(1)由,得(n+m)x2﹣8mx+16m﹣mn=0,由此利用韦达定理能求出m+n;(2)若|CA|,|AB|,|BD|成等差数列,则|AB|=,由,得(n+m)x2+2bmx+mb2﹣mn=0.由此利用根的判别式、韦达定理、弦长公式,结合已知条件能求出结果.
解析:
(Ⅰ)由题,得,
有⊿=,
化简的.
又,所以 从而有;
(Ⅱ)由,
,即
由,
由可得且,
所以
可得,
从而
所以,即有,符合, 故当实数的取值范围是时,存在直线和曲线,使得, , 成等差数列
练习册系列答案
相关题目
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,再随机抽取3人赠送礼品,记这3人中“微信控”的人数为,试求的分布列和数学期望.
参考公式: ,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |