题目内容
【题目】已知a,b为正数,直线y=x﹣2a+1与曲线y=ex+b﹣1相切,则的最小值为( )
A. 9 B. 7 C. D.
【答案】D
【解析】
设切点为(m,n),由y=ex+b﹣1的导数y′=ex+b,可得切线的斜率为em+b=1,n=m﹣2a+1=em+b﹣1,化为2a+b=1,根据均值不等式可得到最值.
a,b为正数,直线y=x﹣2a+1与曲线y=ex+b﹣1相切,
设切点为(m,n),由y=ex+b﹣1的导数y′=ex+b,
可得切线的斜率为em+b=1,n=m﹣2a+1=em+b﹣1,
化为2a+b=1,
则=(2a+b)()=3++≥3+2=3+2,
当且仅当b=a时,上式取得等号,
可得的最小值为3+2.
故选:D.
【题目】《中华人民共和国民法总则》(以下简称《民法总则》)自2017年10月1日起施行.作为民法典的开篇之作,《民法总则》与每个人的一生息息相关.某地区为了调研本地区人们对该法律的了解情况,随机抽取50人,他们的年龄都在区间上,年龄的频率分布及了解《民法总则》的入数如下表:
年龄 | ||||||
频数 | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法总则》 | 1 | 2 | 8 | 12 | 4 | 5 |
(1)填写下面列联表,并判断是否有的把握认为以45岁为分界点对了解《民法总则》政策有差异;
年龄低于45岁的人数 | 年龄不低于45岁的人数 | 合计 | |
了解 | |||
不了解 | |||
合计 |
(2)若对年龄在,的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解《民法总则》的人数为,求随机变量的分布列和数学期望.
参考公式和数据:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】某单位计划在一水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来3年中,设表示流量超过120的年数,求的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?