题目内容

【题目】正方体ABCD﹣A′B′C′D′中,AB′与A′C′所在直线的夹角为(
A.30°
B.60°
C.90°
D.45°

【答案】B
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系, 设正方体ABCD﹣A′B′C′D′中棱长为1,
则A(1,0,0),B′(1,1,1),A′(1,0,1),C′(0,1,1),
=(0,1,1), =(﹣1,1,0),
设AB′与A′C′所在直线的夹角为θ,
则cosθ= = =
∴AB′与A′C′所在直线的夹角为60°.
故选:B.

【考点精析】关于本题考查的异面直线及其所成的角,需要了解异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网