题目内容
【题目】已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.
【答案】x2-=1(y≠0,过点F
【解析】
本试题主要考查了双曲线方程的求解,以及直线与圆的位置关系的运用.
1)设P(x,y),则
化简得=1(y≠0)
(2)①当直线BC与x轴不垂直时,设BC的方程为y=k(x-2)(k≠0)
与双曲线=1联立消去y得
(3-k)2x2+4k2x-(4k2+3)=0
由题意知3-k2≠0且△>0
设B(x1,y1),C(x2,y2),
则
y1y2=k2(x1-2)(x2-2)=k2[x1x2-2(x1+x2)+4]
=k2(-+4)
=
因为x1、x2≠-1
所以直线AB的方程为y=(x+1)
因此M点的坐标为()
因此
②当直线BC与x轴垂直时,起方程为x=2,则B(2,3),C(2,-3)
AB的方程为y=x+1,因此M点的坐标为,
同理可得因此=0
综上=0,即FM⊥FN 故以线段MN为直径的圆经过点F
【题目】根据以往的经验,某工程施工期间的降水量(单位:)对工期的影响如下表:
降水量 | ||||
工期延误天数 |
历年气象资料表明,该工程施工期间降水量小于、、的概率分别为、、,求:
(1)在降水量至少是的条件下,工期延误不超过天的概率;
(2)工期延误天数的均值与方差.
【题目】某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:
汽车型号 | I | II | III | IV | V |
回访客户(人数) | 250 | 100 | 200 | 700 | 350 |
满意率 | 0.5 | 0.3 | 0.6 | 0.3 | 0.2 |
满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.
(Ⅰ) 从III型号汽车的回访客户中随机选取1人,则这个客户不满意的概率为________;
(Ⅱ) 从所有的客户中随机选取1个人,估计这个客户满意的概率;
(Ⅲ) 汽车公司拟改变投资策略,这将导致不同型号汽车的满意率发生变化.假设表格中只有两种型号汽车的满意率数据发生变化,那么哪种型号汽车的满意率增加0.1,哪种型号汽车的满意率减少0.1,使得获得满意的客户人数与样本中的客户总人数的比值达到最大?(只需写出结论)