题目内容

13.已知函数f(x)=$\frac{1}{3}$x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b;
(2)求f(x)的单调区间.

分析 此题考察函数的求导和利用导数研究函数单调性.(1)可由公式求导,得出a和b的关系式.(2)求导,根据f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.该题又用到二次函数的知识分类讨论.

解答 解:(1)由f′(x)=x2+2ax+b,
∴f′(-1)=1-2a+b=0
∴b=2a-1
(2)f(x)=x3+ax2+(2a-1)x,
∴f′(x)=x2+2ax+2a-1
=(x+1)(x+2a-1)
令f′(x)=0,得x=-1或x=1-2a
①当a>1时,1-2a<-1
当x变化时,根据f′(x)与f(x)的变化情况得,
函数f(x)的单调增区间为(-∞,1-2a)和(-1,+∞),单调减区间为(1-2a,-1)
②当a=1时,1-2a=-1,此时有f′(x)≥0恒成立,且仅在x=-1处f′(x)=0,故函数f(x)的单调增区间为R、
③当a<1时,1-2a>-1,同理可得,函数f(x)的单调增区间为(-∞,-1)和(1-2a,+∞),
单调减区间为(-1,1-2a)
综上:当a>1时,函数f(x)的单调增区间为(-∞,1-2a)和(-1,+∞),单调减区间为(1-2a,-1);
当a=1时,函数f(x)的单调增区间为R;
当a<1时,函数f(x)的单调增区间为(-∞,-1)和(1-2a,+∞),单调减区间为(-1,1-2a)

点评 此题是常规题型,难点是通过f′(x)的符号,确定f(x)的单调区间

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网