题目内容

【题目】已知实数a,b满足2a=3,3b=2,则函数f(x)=ax+x﹣b的零点所在的区间是(
A.(﹣2,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,2)

【答案】B
【解析】解:∵实数a,b满足2a=3,3b=2,
∴a=log23>1,0<b=log32<1,
∵函数f(x)=ax+x﹣b,
∴f(x)=(log23)x+x﹣log32单调递增,
∵f(0)=1﹣log32>0
f(﹣1)=log32﹣1﹣log32=﹣1<0,
∴根据函数的零点判定定理得出函数f(x)=ax+x﹣b的零点所在的区间(﹣1,0),
故选:B.
【考点精析】根据题目的已知条件,利用函数的零点的相关知识可以得到问题的答案,需要掌握函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网