题目内容
【题目】无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N* , Sn∈{2,3},则k的最大值为 .
【答案】4
【解析】解:对任意n∈N* , Sn∈{2,3},可得
当n=1时,a1=S1=2或3;
若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;
若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;
或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;
若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;
或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;
或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;
或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;
或3,﹣1,1,0;或3,﹣1,1,﹣1;
…
即有n>4后一项都为0或1或﹣1,则k的最大个数为4,
不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1.
所以答案是:4.
【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳远(单位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳绳(单位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a﹣1 | b | 65 |
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )
A.2号学生进入30秒跳绳决赛
B.5号学生进入30秒跳绳决赛
C.8号学生进入30秒跳绳决赛
D.9号学生进入30秒跳绳决赛