题目内容
【题目】已知函数满足,且在上为增函数,,则不等式的解集为__________.
【答案】
【解析】
由f(﹣x)=﹣f(x),化简不等式得.再分x>0和x<0时两种情况加以讨论,利用函数的单调性和f(1)=0,分别解关于x的不等式得到x的取值范围,最后综合可得原不等式的解集.
∵函数f(x)满足f(﹣x)=﹣f(x)(x∈R),
∴f(x)﹣f(﹣x)=f(x)+f(x)=2f(x),
因此,不等式等价于,
化简得或,
①当x>0时,由于在(0,+∞)上f(x)为增函数且f(1)=0,
∴由不等式f(x)≤0=f(1),得0<x≤1;
②当x<0时,﹣x>0,
不等式f(x)≥0化成﹣f(x)≤0,即f(﹣x)≤0=f(1),
解之得﹣x≤1,即﹣1≤x<0.
综上所述,原不等式的解集为[﹣1,0)∪(0,1].
故答案为:[﹣1,0)∪(0,1]
练习册系列答案
相关题目