题目内容
【题目】设是二次函数,方程
有两个相等的实根,且
(1)求的表达式;
(2)求的图像与两坐标轴所围成图形的面积
【答案】(1);(2)
.
【解析】
试题(1)二次函数解析式的求法:根据已知条件确定二次函数的解析式,一般用待定系数法,选择规律如下:①已知三个点坐标,宜选用一般式;②已知顶点坐标、对称轴、最大(小)值,宜选用顶点式;③已知图象与轴两交点的坐标,宜选用两根式;(2)用微积分基本定理求定积分,关键是求出被积函数的原函数,此外如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加.
试题解析:(1)由是二次函数且
,则可设
方程
由两个相等的实根,
,得到
(2)由可知它的图像与
轴交于
,与
轴交于
记图像与两坐标轴所围成图形的面积为,则
的图像与两坐标轴所围成图形的面积为
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议。为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照4:3:3的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图。
(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;
(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列列联表,并判断是否有99%的把握认为“该校学生的每周平均体育运动时间是否“优秀”与年级有关”.
基础年级 | 高三 | 合计 | |
优秀 | |||
非优秀 | |||
合计 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.
【题目】某高校在2019的自主招生考试中,考生笔试成绩分布在,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,得到的如下的频率分布表:
组号 | 分数区间 | 频数 | 频率 |
1 | 70 | 0.35 | |
2 | 10 | 0.05 | |
3 | ① | 0.20 | |
4 | 60 | 0.30 | |
5 | 20 | ② |
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图;
(2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组各组抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.