题目内容
20.已知函数f(x)=$\frac{1}{3}$x3+ax+b(a,b∈R)在x=2处取得极小值-$\frac{4}{3}$.(Ⅰ)求f(x);
(Ⅱ)若$\frac{1}{3}$x3+ax+b≤m2+m+$\frac{10}{3}$对x∈[-4,0]恒成立,求m的取值范围.
分析 (1)先求导,再根据在x=2处取得极小值$-\frac{4}{3}$,得到$\left\{\begin{array}{l}{f^/}(2)=0\\ f(2)=-\frac{4}{3}\end{array}\right.$,解得即可,
(2)先根据导数求出函数f(x)的最大值,再解不等式即可.
解答 解:(Ⅰ)f′(x)=x2+a,
∴$\left\{\begin{array}{l}{f^/}(2)=0\\ f(2)=-\frac{4}{3}\end{array}\right.$,
∴$\left\{\begin{array}{l}a=-4\\ b=4\end{array}\right.$,
∴$f(x)=\frac{1}{3}{x^3}-4x+4$.
(Ⅱ)f′(x)=x2+a,令有x=±2.
当x∈[-4,0]时,f(x)在[-4,-2]上递增,在[-2,0]上递减,
故f(x)在[-4,0]上最大值$f(-2)=\frac{28}{3}$,
依题意,${m^2}+m+\frac{10}{3}≥\frac{28}{3}$,
即m2+m+6≥0,
解得m>2或m<-3,
∴{m|m>2或m<-3}.
点评 本题考查了导数和函数的极值的和最值的关系以及恒成立问题,属于中档题.
练习册系列答案
相关题目
8.设函数y=f(x)(x∈R)的导函数为f′(x),且f(x)=f(-x),f′(x)<f(x),则下列不等式成立的是( )
A. | f(0)<e-1f(1)<e2f(2) | B. | e-1f(1)<f(0)<e2f(2) | C. | e2f(2)<e-1f(1)<f(0) | D. | e2f(2)<f(0)<e-1f(1) |
15.已知等比数列{an}中a2=2,a5=$\frac{1}{4}$,则a1•a2+a2•a3+a3•a4+…+an•an+1等于( )
A. | 16(1-4-n) | B. | 16(1-2n) | C. | $\frac{32}{3}(1-{4^{-n}})$ | D. | $\frac{32}{3}(1-{2^{-n}})$ |
12.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{-x+3,x>1}\end{array}\right.$,那么f(f($\frac{5}{2}$))=( )
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
9.已知cosθ>0,tanθ<0,则$\sqrt{1-co{s}^{2}θ}$化简结果为( )
A. | ±sinθ | B. | sinθ | C. | -sinθ | D. | 以上都不对 |