题目内容
等差数列{an}是递减数列,且a2•a3•a4=48,a2+a3+a4=12,则数列{an}的通项公式是( )
A.an=-2n+10 | B.an=2n-12 | C.an=2n+4 | D.an=-2n+12 |
设等差数列{an}的公差为d,∵等差数列{an}是递减数列,∴d<0.
∵a2+a3+a4=12,∴a3-d+a3+a3+d=12,解得a3=4.
又a2•a3•a4=48,∴(4-d)×4×(4+d)=48,化为16-d2=12,又d<0,解得d=-2.
∴an=a3+(n-3)d=4-2(n-3)=10-2n.
故选A.
∵a2+a3+a4=12,∴a3-d+a3+a3+d=12,解得a3=4.
又a2•a3•a4=48,∴(4-d)×4×(4+d)=48,化为16-d2=12,又d<0,解得d=-2.
∴an=a3+(n-3)d=4-2(n-3)=10-2n.
故选A.
练习册系列答案
相关题目