题目内容

【题目】已知 分别为椭圆的左、右焦点,椭圆离心率,直线通过点,且倾斜角是45°.

(1)求椭圆的标准方程;

(2)若直线与椭圆交于两点,求的面积.

【答案】(1) ;(2) .

【解析】试题分析:(1)由焦点坐标可得由离心率,可得,从而可得进而可得椭圆的标准方程;(2)由点斜式可得直线的方程为: 代入椭圆,求出的坐标利用两点间的距离公式、点到直线距离公式以及三角形面积公式可得的面积.

试题解析:(1)由已知,又

∴椭圆的标准方程是

(2)因为,

所以直线的方程为:

代入椭圆中整理得,

,

可解得,

,

到直线的距离为: ,

.

【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程 ;③找关系:根据已知条件,建立关于的方程组;④得方程:解方程组,将解代入所设方程,即为所求.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网