题目内容
【题目】根据幼儿身心发展的特征,幼儿园通常着重在健康、科学、社会、语言、艺术五大领域对幼儿展开全方位的教育和培养.经调查发现,一个幼儿除了在幼儿园进行五大领域的系统学习之外,还会报一些课外兴趣班.而家长朋友们对于是否额外报这些课外兴趣班的态度也是不一样的.某调查机构对某幼儿园的100名幼儿家长就孩子是否报课外兴趣班的赞同程度进行调查统计,得到家长对幼儿报课外兴趣班赞同度的频数分布表:
赞同度 | |||||
家长数 | 2 | 12 | 14 | 28 | 44 |
(1)分别计算对幼儿报兴趣班的赞同度不低于的家长比例和对幼儿报兴趣班的赞同度低于的家长比例;
(2)求家长对幼儿报兴趣班的赞同度的平均数与方差的估计值.(同一组中的数据用该组区间的中点值代替)
【答案】(1),; (2),.
【解析】
(1)直接利用频数分布表计算得到答案.
(2)直接利用平均值和方差的公式代入数据计算得到答案.
(1)根据家长对幼儿报课外兴趣班赞同度的频数分布表,
对幼儿报兴趣班的赞同度不低于的家长比例为;
对幼儿报兴趣班的赞同度低于的家长比例为.
(2)由题意,家长对幼儿报兴趣班的赞同度的平均数为
,
其方差为
,
所以家长对幼儿报兴趣班的赞同度的平均数与方差的估计值分别为0.70和0.0496.
【题目】某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族",计划在明年及明年以后才购买5G手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(1)完成下列列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;
属于“追光族" | 属于“观望者" | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求的分布列及数学期望.
附,其中
0.15 | 0.10 | 0.05 | 0.025 | p>0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某学校为了解学生假期参与志愿服务活动的情况,随机调查了名男生,名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):
超过小时 | 不超过小时 | |
男 | ||
女 |
(1)能否有的把握认为该校学生一周参与志愿服务活动时间是否超过小时与性别有关?
(2)以这名学生参与志愿服务活动时间超过小时的频率作为该事件发生的概率,现从该校学生中随机抽查名学生,试估计这名学生中一周参与志愿服务活动时间超过小时的人数.
附:
【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
经常网购 | 偶尔或不用网购 | 合计 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合计 |
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |