题目内容
【题目】如图,在三棱柱中,,,为的中点,点在平面内的射影在线段上.
(1)求证:;
(2)若是正三角形,求三棱柱的体积.
【答案】(1)见证明;(2)
【解析】
(1)分别证明和,结合直线与平面垂直判定,即可。(2)法一:计算,结合和,即可。法二 :计算,结合,计算体积,即可。法三:结合,计算结果,即可。
(1)证明:设点在平面内的射影为,
则,,且,因,所以.
在中,,,
则,在中,,,
则,
故,故.
因,故.
(2)法一、,
由(1)得,故是三棱锥的高,
是正三角形,,,
,
,
故三棱柱的体积,故三棱柱的体积为.
法二、将三棱柱补成四棱柱如图,因且高一样,
故,
故,
由(1)得,故是四棱柱的高,
故,
故,故三棱柱的体积为.
法三、在三棱锥中,由(1)得,是三棱锥的高,6分
记到平面的距离为,
由得,即,
为的中点,故到平面的距离为,
.
故三棱柱的体积为.
练习册系列答案
相关题目