题目内容

已知函数f(x)=
3
sin(ωx+?)-cos(ωx+?)  (0<?<π,ω>0)
为偶函数,且函数y=f(x)图象的两相邻对称轴的距离为
π
2

(1)求f(x)的解析式;
(2)将函数y=f(x)的图象向右平移
π
6
个单位后,得到函数y=g(x)的图象,求g(x)的单调递减区间.
(3)若存在x0∈(0,
3
)
,使不等式f(x0)<m成立,求实数m的取值范围.
分析:(1)化简f(x)的解析式,利用f(x)为偶函数求出?值,再利用周期等于π,求出ω,即得f(x)的解析式.
(2)g(x)=2cos2(x-
π
6
)=2cos(2x-
π
3
)
,由2kπ≤2x-
π
3
≤2kπ+π
,解得x的范围,即得函数的单调递减区间.
(3)依题可得只需x0∈(0,
3
)
时,m大于f(x0)的最小值即可.
解答:解:(1)
f(x)=
3
sin(ωx+?)-cos(ωx+?) 
=
2sin(ωx+?-
π
6
)

∵f(x)为偶函数,所以?-
π
6
=kπ+
π
2
,又0<?<π,所以?=
3

函数y=f(x)图象的两相邻对称轴的距离为
π
2
,所以周期T=π,于是ω=2,所以,f(x)=2sin(2x+
π
2
)=2cos2x

(2)g(x)=2cos2(x-
π
6
)=2cos(2x-
π
3
)
,由2kπ≤2x-
π
3
≤2kπ+π

解得 kπ+
π
6
≤x≤kπ+
3
,所以函数的单调递减区间为[kπ+
π
6
,kπ+
3
]   (k∈Z)

(3)依题可得只需x0∈(0,
3
)
时,m>(f(x0))min =-2.
点评:本题考查y=Asin(ωx+∅)的图象的变换,正弦函数的奇偶性、单调性及最值,求g(x)的单调递减区间是解题的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网