题目内容
(本题满分12分)设函数.(1)求函数的单调区间;(2)若对恒成立,求实数的取值范围.
(1)时,函数在上单调递增;时,函数在上单调递增,在上单调递减.(2)略
解析
(本小题满分12分)已知函数在上是增函数,在上是减函数.(1)求函数的解析式;(2)若时,恒成立,求实数的取值范围;(3)是否存在实数,使得方程在区间上恰有两个相异实数根,若存在,求出的范围,若不存在说明理由.
(本小题满分14分)已知函数,(Ⅰ)若,求的单调区间;(Ⅱ)在(Ⅰ)的条件下,对,都有,求实数的取值范围;(Ⅲ)若在,上单调递增,在上单调递减,求实数的取值范围。
已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.(Ⅰ) 当a=2时,求f (x)的极小值;(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于等于10.
(本题满分14分)设函数(1)求函数极值;(2)当恒成立,求实数a的取值范围.
(本小题满分15分)已知函数(1)若函数在上为增函数,求实数的取值范围;(2)当时,求在上的最大值和最小值;(3)当时,求证对任意大于1的正整数,恒成立.
(本题满分14分)已知函数(Ⅰ)求的最小值;(Ⅱ)若在上为单调增函数,求实数的取值范围;(Ⅲ)证明:….
设函数.(1)若的两个极值点为,且,求实数的值;(2)是否存在实数,使得是上的单调函数?若存在,求出的值;若不存在,说明理由.
(本大题12分)已知函数函数的图象与的图象关于直线对称,.(Ⅰ)当时,若对均有成立,求实数的取值范围;(Ⅱ)设的图象与的图象和的图象均相切,切点分别为和,其中.(1)求证:;(2)若当时,关于的不等式恒成立,求实数的取值范围.