题目内容
【题目】将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组:{2,4},{6,8,10,12},{14,16,18,20,22,24},…,则2018位于( )组.
A.30
B.31
C.32
D.33
【答案】C
【解析】解:第一组有2=1×2个数,最后一个数为4; 第二组有4=2×2个数,最后一个数为12即2×(2+4);
第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);
…
∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).
∴当n=31时,第31组的最后一个数为2×31×32=1984,
∴当n=32时,第32组的最后一个数为2×32×33=2112,
∴2018位于第32组.
故选:C
根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律即可使问题得到解决.
练习册系列答案
相关题目