题目内容
【题目】已知曲线C1的极坐标方程为ρ2cos2θ=18,曲线C2的极坐标方程为θ= ,曲线C1 , C2相交于A,B两点.
(1)求A,B两点的极坐标;
(2)曲线C1与直线 (t为参数)分别相交于M,N两点,求线段MN的长度.
【答案】
(1)解:θ= ,代入ρ2cos2θ=18,可得ρ=±6,
∴A,B两点的极坐标分别为(6, ),(﹣6, )
(2)解:曲线C1的极坐标方程为ρ2cos2θ=18,化为ρ2(cos2θ﹣sin2θ)=18,
得到直角坐标方程为x2﹣y2=18,
直线 代入x2﹣y2=18,
整理得 .
∴|MN|= =4
【解析】(1)由θ= ,代入ρ2cos2θ=18,可得ρ=±6,进而得到点A,B的极坐标.(2)由曲线C1的极坐标方程ρ2cos2θ=18化为ρ2(cos2θ﹣sin2θ)=18,即可得到普通方程为x2﹣y2=18.将直线 代入x2﹣y2=8,整理得 .进而得到|MN|.
【题目】在高中学习过程中,同学们经常这样说“如果物理成绩好,那么学习数学就没什么问题”某班针对“高中生物理对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
编号 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
数学(y) | 130 | 125 | 110 | 95 | 90 |
(参考公式:b= , = b ,)参考数据:902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学y成绩关于物理成绩x的线性回归方程 = x+ (b精确到0.1),若某位学生的物理成绩为80分时,预测他的物理成绩.
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
【题目】某商场为一种跃进商品进行合理定价,将该商品按事先拟定的价格进行试销,得到如下数据:
单位(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)按照上述数据,求四归直线方程,其中,;
(2)预计在今后的销售中,销量与单位仍然服从(Ⅰ)中的关系,若该商品的成本是每件7.5元,为使商场获得最大利润,该商品的单价应定为多少元?(利润=销售收入﹣成本)