题目内容
【题目】已知椭圆的离心率为,右焦点为,直线l经过点F,且与椭圆交于A,B两点,O为坐标原点.
(1)求椭圆的标准方程;
(2)当直线l绕点F转动时,试问:在x轴上是否存在定点M,使得为常数?若存在,求出定点M的坐标;若不存在,请说明理由.
【答案】(1)(2)存在定点满足题意
【解析】
(1)由题意得,再根据右焦点为,求出的值,就可得到的值,再根据,,的关系,解出值,则椭圆方程可知;(2)当直线斜率存在时,设出直线的方程,与椭圆方程联立,消去,得到关于的一元二次方程,求出,,设出M点坐标,以及,要使其为常数,只需要,化简,可求出的值,当直线垂直于轴时,同样求出的值,两者一致,所以在轴上存在定点M,使得为常数.
(1)由题意可知,,又,解得,
所以,所以椭圆的方程为.
(2)若直线不l垂直于x轴,可设的方程为.
由得.
.
设,,则,.
设,则,,
要使得(为常数),只要,
即.
对于任意实数k,要使式恒成立,
只要,解得.
若直线l垂直于x轴,其方程为,
此时,直线l与椭圆两交点为,,
取点,有,,
.
综上所述,过定点的动直线l与椭圆相交于A,B两点,当直线l绕点F转动时,存在定点,使得.
【题目】在创建“全国文明卫生城市”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的人的得分(满分100分)统计结果如下表所示:
组别 | |||||||
频数 |
(1)由频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;
②每次获赠的随机话费和对应的概率为:
赠送话费的金额(单位:元) | ||
概率 |
现有市民甲参加此次问卷调查,记 (单位:元)为该市民参加问卷调查获赠的话费,求的分布列与均值.
附:参考数据与公式
若,则=0.9544,