题目内容

【题目】在极标坐系中,已知圆的圆心,半径

(1)求圆的极坐标方程;

(2)若,直线的参数方程为t为参数),直线交圆两点,求弦长的取值范围.

【答案】(1)ρ2﹣2ρ(cosθ+sinθ)﹣1=0(2)[2,2

【解析】

(1)极坐标化为直角坐标可得C(1,1),则圆C的直角坐标方程为(x﹣1)2+(y﹣1)2=3.化为极坐标方程是ρ2﹣2ρcosθ+sinθ)﹣1=0 .

(2)联立直线的参数方程与圆的直角坐标方程可得t2+2tcosα+sinα)﹣1=0.结合题意和直线参数的几何意义讨论可得弦长|AB|的取值范围是[2,2).

(1)C)的直角坐标为(1,1),

∴圆C的直角坐标方程为(x﹣1)2+(y﹣1)2=3.

化为极坐标方程是ρ2﹣2ρcosθ+sinθ)﹣1=0 .

(2)将代入圆C的直角坐标方程(x﹣1)2+(y﹣1)2=3,

得(1+tcosα2+(1+tsinα2=3,

t2+2tcosα+sinα)﹣1=0.

t1+t2=﹣2(cosα+sinα),t1t2=﹣1.

|AB|=|t1t2|==2

α[0,),2α[0,),

2≤|AB|<2

即弦长|AB|的取值范围是[2,2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网