题目内容
【题目】如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.
Ⅰ求证;
Ⅱ若平面ABCD.
求二面角的大小;
在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.
【答案】Ⅰ详见解析;Ⅱ①,②或.
【解析】
Ⅰ可以通过已知证明出平面PAB,这样就可以证明出;
Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,可以求出相应点的坐标,求出平面PBC的法向量为、平面PCD的法向量,利用空间向量的数量积,求出二面角的大小;
求出平面PBC的法向量,利用线面角的公式求出的值.
证明:Ⅰ在图1中,,,
为平行四边形,,
,,
当沿AD折起时,,,即,,
又,平面PAB,
又平面PAB,.
解:Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由于平面ABCD
则0,,0,,1,,0,,1,
1,,1,,0,,
设平面PBC的法向量为y,,
则,取,得0,,
设平面PCD的法向量b,,
则,取,得1,,
设二面角的大小为,可知为钝角,
则,.
二面角的大小为.
设AM与面PBC所成角为,
0,,1,,,,
平面PBC的法向量0,,
直线AM与平面PBC所成的角为,
,
解得或.
练习册系列答案
相关题目
【题目】随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过小时的名大学生,将人使用手机的时间分成组:,,,,分别加以统计,得到下表,根据数据完成下列问题:
使用时间/时 | |||||
大学生/人 |
(1)完成频率分布直方图;
(2)根据频率分布直方图估计大学生使用手机的平均时间.