题目内容
设数列{an}的前n项和Sn满足
=3n-2.
(1)求数列{an}的通项公式;
(2)设bn=
,Tn是数列{bn}的前n项和,求使得Tn<
对所有n∈N*都成立的最小正整数m.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212430498.png)
(1)求数列{an}的通项公式;
(2)设bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212446552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212462505.png)
(1)an=6n-5(n∈N*)
(2)10
(2)10
解:(1)由
=3n-2,得Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;
当n=1时,a1=S1=3×1-2=6-5=1.
所以an=6n-5(n∈N*).
(2)由(1)得bn=
=
=
(
-
),
故Tn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
).
因此,使得
(1-
)<
(n∈N*)成立的m必须满足
≤
,即m≥10,故满足要求的最小正整数m为10.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212430498.png)
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;
当n=1时,a1=S1=3×1-2=6-5=1.
所以an=6n-5(n∈N*).
(2)由(1)得bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212446552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212524991.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212555338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212571529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212586500.png)
故Tn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212555338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212618306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212618306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212664349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212571529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212586500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212555338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212586500.png)
因此,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212555338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212586500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212462505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212555338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053212462505.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目