题目内容
.(填“”或“”).
【解析】
试题分析:幂函数在上单调递增,,所以
考点:幂函数的性质
某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示).
(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价—成本总价)为元. 试用销售单价表示毛利润并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?
计算:(1); (2).
设函数, 是定义域为的奇函数.
(Ⅰ)求的值,判断并证明当时,函数在上的单调性;
(Ⅱ)已知,函数,求的值域;
(Ⅲ)已知,若对于时恒成立.请求出最大的整数.
某人定制了一批地砖,每块地砖(如图1所示)是边长为40的正方形,点分别在边和上,△,△和四边形均由单一材料制成,制成△,△和四边形的三种材料的每平方米价格之比依次为3:2:1.若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分构成四边形.则当 时,定制这批地砖所需的材料费用最省?
.
已知函数的定义域为集合,集合,
集合.
(1)求;
(2)若 (),求的值.
某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本)。销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
分别写出和利润函数的解析式(利润=销售收入—总成本);
工厂生产多少台产品时,可使盈利最多?并求出此时每台产品的售价。
已知函数,其中常数满足
(1)若,判断函数的单调性;
(2)若,求时的的取值范围.