题目内容

8.已知正项数列{an}的前n项和为Sn,且Sn是${a_n}^2$和an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${a_{k_n}}∈\{{a_1},{a_2},…{a_n},…\}$,且${a_{k_1}},{a_{k_2}},…,{a_{k_n}},…$成等比数列,当k1=2,k2=4时,求数列{kn}的前n项和Tn

分析 (Ⅰ)由Sn是${a_n}^2$和an的等差中项,可得$2{S_n}={a_n}^2+{a_n}$,利用递推关系与等差数列的通项公式即可得出.
(II)设等比数列的公比为q,由题意知$q=\frac{{{a_{k_2}}}}{{{a_{k_1}}}}=\frac{a_4}{a_2}=2$,${a_{k_n}}={k_n}$,又${a_{k_n}}={a_{k_1}}•{2^{n-1}}={2^n}$,${k_n}={2^n}$,即可得出.

解答 解:(Ⅰ)∵Sn是${a_n}^2$和an的等差中项,∴$2{S_n}={a_n}^2+{a_n}$,
又$2{S_{n-1}}={a_{n-1}}^2+{a_{n-1}}(n≥2)$,
两式相减并化简得(an-an-1-1)(an+an-1)=0,
又an+an-1>0,所以an-an-1=1,故数列{an}是公差为1的等差数列,
当n=1时,$2{a_1}=2{S_1}={a_1}^2+{a_1}$,又a1>0,∴a1=1.
∴an=1+(n-1)=n.
(Ⅱ)设等比数列的公比为q,由题意知$q=\frac{{{a_{k_2}}}}{{{a_{k_1}}}}=\frac{a_4}{a_2}=2$,
${a_{k_n}}={k_n}$,又${a_{k_n}}={a_{k_1}}•{2^{n-1}}={2^n}$,
${k_n}={2^n}$,
${T_n}=2+{2^2}+…+{2^n}=\frac{{2(1-{2^n})}}{1-2}={2^{n+1}}-2$.

点评 本题考查了递推关系、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网