题目内容
【题目】如图,在平面斜坐标系中,,平面上任意一点关于斜坐标系的斜坐标是这样定义的:若(其中,分别为与轴,轴同方向的单位向量),则点的斜坐标为
(1)若点在斜坐标系中的坐标为,求点到原点的距离.
(2)求以原点为圆心且半径为的圆在斜坐标系中的方程.
(3)在斜坐标系中,若直线交(2)中的圆于两点,则当为何值时,的面积取得最大值?并求此最大值.
【答案】(1)2;(2);(3)时,取得最大值.
【解析】
(1)根据斜坐标的定义可知,通过平方运算求得,即为所求距离;(2)设坐标,可知;利用整理可得结果;(3)将与(2)中所求方程联立,利用韦达定理求得,又的高为,根据三角形面积公式构造出关于的函数,利用函数值域求解方法可求得所求最大值.
(1)由点的斜坐标为得:
,则
即点到原点的距离为
(2)设所求圆上的任意一点的斜坐标为,则
由圆的半径为得:,即
即所求圆的方程为:
(3)直线是平行于轴的直线
当时,直线与圆有两个交点,设为:,
联立与得:
,
的面积
当,即时,的面积取得最大值
练习册系列答案
相关题目
【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如表所示((吨)为买进蔬菜的数量,(天)为销售天数):
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)根据上表数据在所给坐标系中绘制散点图,并用最小二乘法求出关于的线性回归方程;
(2)根据(Ⅰ)中的计算结果,该蔬菜商店准备一次性买进25吨,预计需要销售多少天?
(参考数据和公式:,,,, ,.)