题目内容
16.求和:${C}_{n}^{0}$${C}_{n}^{1}$+${C}_{n}^{1}$${C}_{n}^{2}$+…+${C}_{n}^{n-1}$${C}_{n}^{n}$.分析 由等式(1+x)n×(x+1)n=(1+x)2n,
取左右两边展开式中含xn-1项的系数,得出${C}_{n}^{0}$•${C}_{n}^{1}$+${C}_{n}^{1}$•${C}_{n}^{2}$+…+${C}_{n}^{n-1}$•${C}_{n}^{n}$的值是多少.
解答 解:∵(1+x)n×(x+1)n=(1+x)n×(1+x)n=(1+x)2n,
取左右两边展开式中含xn-1项的系数,则
(${C}_{n}^{0}$•${C}_{n}^{1}$+${C}_{n}^{1}$•${C}_{n}^{2}$+…+${C}_{n}^{n-1}$•${C}_{n}^{n}$)•xn-1=${C}_{2n}^{n-1}$•xn-1,
∴${C}_{n}^{0}$•${C}_{n}^{1}$+${C}_{n}^{1}$•${C}_{n}^{2}$+…+${C}_{n}^{n-1}$•${C}_{n}^{n}$=${C}_{2n}^{n-1}$=$\frac{(2n)!}{(n-1)!•(n+1)!}$.
点评 本题考查了二项式定理的应用问题,解题的关键是构造等式,利用二项式展开式定理解答,是基础题目.
练习册系列答案
相关题目
7.已知{an}是等差数列,a1+a2+a3=3,a5+a6+a7=9,则a3=( )
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
4.不等式$\frac{1-x}{{{x^2}-4}}<0$的解集是( )
A. | (-2,1) | B. | (2,+∞) | C. | (-2,1)∪(2,+∞) | D. | (-∞,-2)∪(1,+∞) |