题目内容

16.已知数列{an}各项均为正数,其前n项和为Sn满足2Sn=(an+3)(an-2)(n∈N*
(1)求数列{an}的通项公式.
(2)求数列{$\frac{1}{{a}_{2n-1}•{a}_{2n+1}}$}的前n项和Tn

分析 (1)2Sn=(an+3)(an-2)(n∈N*),即2Sn=${a}_{n}^{2}+{a}_{n}-6$,利用递推式化为:(an+an-1)(an-an-1-1)=0,由于an>0,可得an-an-1=1,利用等差数列的通项公式即可得出;
(2)由(1)可得:$\frac{1}{{a}_{2n-1}•{a}_{2n+1}}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.利用“裂项求和”即可得出.

解答 解:(1)∵2Sn=(an+3)(an-2)(n∈N*),即2Sn=${a}_{n}^{2}+{a}_{n}-6$,
∴当n=1时,$2{a}_{1}={a}_{1}^{2}+{a}_{1}$-6,a1>0,解得a1=3.
当n≥2时,2Sn-1=${a}_{n-1}^{2}+{a}_{n-1}$-6,
∴2an=${a}_{n}^{2}+{a}_{n}$-${a}_{n-1}^{2}$-an-1,化为(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,∴数列{an}是等差数列,首项为3,公差为1,
∴an=3+(n-1)=n+2,
∴an=n+2.
(2)由(1)可得:$\frac{1}{{a}_{2n-1}•{a}_{2n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.
∴数列{$\frac{1}{{a}_{2n-1}•{a}_{2n+1}}$}的前n项和Tn=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$=$\frac{1}{2}$$(\frac{1}{3}-\frac{1}{2n+3})$=$\frac{n}{3(2n+3)}$.

点评 本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网