题目内容
(本小题满分12分) 四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠ABC=45°,AB=2,BC=
,SA=SB=
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208250716517.png)
(1)证明:SA⊥BC;
(2)求直线SD与平面SAB所成角的大小;
(3)求二面角D-SA-B的大小.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825040378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825056337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208250716517.png)
(1)证明:SA⊥BC;
(2)求直线SD与平面SAB所成角的大小;
(3)求二面角D-SA-B的大小.
(1)见解析;(2)
;(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825102742.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825118428.png)
(1)通过面面垂直找到与底面垂直的线SO,然后建立空间直角坐标系,利用向量法证明两条直线垂直;(2)利用向量法把直线与平面所成的角转化为已知直线向量与平面法向量的夹角,利用数量积知识求解夹角即可;(3)先求出两个平面的法向量,然后把二面角的大小问题转化为求两法向量的夹角问题。
证明:(1)作
,垂足为
,连结
,由侧面
底面
,得
平
面
. 因为
,所以
.
又
,
为等腰直角三角形,
.如图,以
为坐标原点,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825648387.png)
为
轴正向,建立直角坐标系
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208257115459.png)
,
,
,
,
,
,
,…所以
.………………………4分
(2)取
中点
,
,
连结
,取
中点
,连结
,
.
,
,
.
,
,
与平面
内两条相交直线
,
垂直.
所以
平面
,
与
的夹角记为
,
与平面
所成的角记为
,则
与
互余.
,
.
,所以
,……………8分
(3)由上知
为平面SAB的法向量,
。易得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220827396723.png)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825929787.png)
同理可求得平面SDA的一个法向量为
………10分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208275521352.png)
由题知所求二面角为钝二面角,故二面角D-SA-B的大小为
。………12分
证明:(1)作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825134579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825149300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825180397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825212499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825227534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825461426.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825227534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825492537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825524520.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825555668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825586499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825602534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825149300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825648387.png)
为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825664280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825680550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208257115459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825726632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825742657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825882690.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825914536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825929787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826101801.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826116719.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826148582.png)
(2)取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826163396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826272322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208262881002.png)
连结
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826350418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826350418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826444324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826475390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208264911022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208266781131.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208267251064.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826740781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826772725.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826787688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826475390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826818481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826350418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826163396.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826881418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826818481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826928397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826943423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826974291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826990411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826818481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220827037346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220826974291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220827037346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220827099697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220827302794.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208273181448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825102742.png)
(3)由上知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220827364410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208266781131.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220827396723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220827489796.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825929787.png)
同理可求得平面SDA的一个法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220827520730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232208275521352.png)
由题知所求二面角为钝二面角,故二面角D-SA-B的大小为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220825118428.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目