题目内容
在正三棱柱ABC-A1B1C1中,AB=2,AA1=,点D为AC的中点,点E在线段AA1上.
(1)当AE∶EA1=1∶2时,求证DE⊥BC1;
(2)是否存在点E,使二面角D-BE-A等于60°,若存在求AE的长;若不存在,请说明理由.
(1)当AE∶EA1=1∶2时,求证DE⊥BC1;
(2)是否存在点E,使二面角D-BE-A等于60°,若存在求AE的长;若不存在,请说明理由.
(1)见解析(2)存在
(1)证明:连接DC1,因为ABC-A1B1C1为正三棱柱,所以△ABC为正三角形,又因为D为AC的中点,所以BD⊥AC,又平面ABC⊥平面ACC1A1,所以BD⊥平面ACC1A1,所以BD⊥DE.因为AE∶EA1=1∶2,AB=2,AA1=,所以AE=,AD=1,所以在Rt△ADE中,∠ADE=30°,在Rt△DCC1中,∠C1DC=60°,所以∠EDC1=90°,即ED⊥DC1,又BD∩DC1=D,所以ED⊥平面BDC1,BC1?面BDC1,所以ED⊥BC1.
(2)解 假设存在点E满足条件,设AE=h.
取A1C1的中点D1,连接DD1,则DD1⊥平面ABC,所以DD1⊥AD,DD1⊥BD,分别以DA,DB,DD1所在直线为x,y,z轴建立空间直角坐标系D-xyz,则A(1,0,0),B(0,,0),E(1,0,h),所以=(0,,0),=(1,0,h),=(-1,,0),=(0,0,h),设平面DBE的一个法向量为n1=(x1,y1,z1),
则,令z1=1,得n1=(-h,0,1),同理,平面ABE的一个法向量为n2=(x2,y2,z2),则,∴n2=(,1,0).
∴cos〈n1,n2〉==cos 60°=.解得h=<,故存在点E,当AE=时,二面角D-BE-A等于60°.
(2)解 假设存在点E满足条件,设AE=h.
取A1C1的中点D1,连接DD1,则DD1⊥平面ABC,所以DD1⊥AD,DD1⊥BD,分别以DA,DB,DD1所在直线为x,y,z轴建立空间直角坐标系D-xyz,则A(1,0,0),B(0,,0),E(1,0,h),所以=(0,,0),=(1,0,h),=(-1,,0),=(0,0,h),设平面DBE的一个法向量为n1=(x1,y1,z1),
则,令z1=1,得n1=(-h,0,1),同理,平面ABE的一个法向量为n2=(x2,y2,z2),则,∴n2=(,1,0).
∴cos〈n1,n2〉==cos 60°=.解得h=<,故存在点E,当AE=时,二面角D-BE-A等于60°.
练习册系列答案
相关题目