ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖª|$\overrightarrow{a}$|=1£¬$\overrightarrow{b}$=£¨0£¬2£©£¬ÇÒ$\overrightarrow{a}•\overrightarrow{b}$=$\sqrt{3}$£¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇµÄ´óСΪ£¨¡¡¡¡£©A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{4}$ | C£® | $\frac{¦Ð}{3}$ | D£® | $\frac{¦Ð}{2}$ |
·ÖÎö ±¾ÌâÊÇÒ»¸öÇó¼Ð½ÇµÄÎÊÌ⣬ÒÑÖªÌõ¼þµÃµ½Á½¸öÏòÁ¿µÄÄ£³¤£¬ÀûÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Ò壬½¨Á¢¹ØÓڼнǵķ½³Ì£¬¼´¿ÉµÃµ½¼Ð½Ç£¬×¢Òâ¼Ð½ÇµÄ·¶Î§£®
½â´ð ½â£ºÓÉÓÚ$\overrightarrow{b}$=£¨0£¬2£©£¬Ôò|$\overrightarrow{b}$|=2£¬
ÓÖÓÉ|$\overrightarrow{a}$|=1£¬Ôò$\overrightarrow{a}•\overrightarrow{b}$=1¡Á2¡Ácos$£¼\overrightarrow{a}£¬\overrightarrow{b}£¾$=$\sqrt{3}$£¬
¼´cos$£¼\overrightarrow{a}£¬\overrightarrow{b}£¾$=$\frac{\sqrt{3}}{2}$£¬
ÓÉÓÚ0¡Ü$£¼\overrightarrow{a}£¬\overrightarrow{b}£¾$¡Ü¦Ð£¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇµÄ´óСΪ$\frac{¦Ð}{6}$£¬
¹ÊÑ¡£ºA
µãÆÀ ±¾ÌâÊǶÔÏòÁ¿ÊýÁ¿»ýµÄ¿¼²é£¬¸ù¾ÝÁ½¸öÏòÁ¿µÄ¼Ð½ÇºÍÄ££¬ÓÃÊýÁ¿»ýÁгöʽ×Ó£¬µ«ÊÇÕâ²½¹¤×÷×öÍêÒÔºó£¬ÌâÄ¿µÄÖØÐÄתÒƵ½Çó½ÇµÄÎÊÌ⣮עÒâ½âÌâ¹ý³ÌÖнǵķ¶Î§£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³ösµÄֵΪ£¨¡¡¡¡£©
A£® | $\frac{3}{4}$ | B£® | $\frac{4}{5}$ | C£® | $\frac{5}{6}$ | D£® | 5 |
16£®ÒÑÖªA£¨1£¬0£©£¬ÇúÏßC£ºy=eaxºã¹ýµãB£¬ÈôPÊÇÇúÏßCÉϵĶ¯µã£¬ÇÒ$\overrightarrow{AB}$•$\overrightarrow{AP}$µÄ×îСֵΪ2£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£® | -2 | B£® | -1 | C£® | 1 | D£® | 2 |
10£®Èôf£¨x£©=2sin2¦Øx+sin£¨2¦Øx-$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©¶ÔÈÎÒâʵÊýx¶¼ÓÐf£¨x+$\frac{¦Ð}{2}$£©=f£¨x-$\frac{¦Ð}{2}$£©£¬Ôòf£¨$\frac{7¦Ð}{24}$£©µÈÓÚ£¨¡¡¡¡£©
A£® | $\frac{\sqrt{3}-1}{2}$ | B£® | $\frac{1+\sqrt{3}}{2}$ | C£® | $\frac{2+\sqrt{6}}{2}$ | D£® | $\frac{\sqrt{6}-2}{2}$ |
14£®¹ýµã£¨3£¬-1£©£¬Ô²ÐÄÔÚyÖáÉÏ£¬ÇÒÓëxÖáÏàÇеÄÔ²µÄ·½³ÌΪ£¨¡¡¡¡£©
A£® | x2+y2-10y=0 | B£® | x2+y2+10y=0 | C£® | x2+y2+10x=0 | D£® | x2+y2-10x=0 |