题目内容
已知函数
,
.
(Ⅰ)若函数
在
上至少有一个零点,求
的取值范围;
(Ⅱ)若函数
在
上的最大值为
,求
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024323972806.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024323988428.png)
(Ⅰ)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324019447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324019553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324035283.png)
(Ⅱ)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324019447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324066473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324081287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324035283.png)
(Ⅰ)
;(Ⅱ)
或
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324128371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324144369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324159549.png)
试题分析:(Ⅰ)根据方程的根与函数的零点的关系,将问题转化为函数对应的方程有至少一个根,那么由判别式与根的个数的关系可知,只要判别式大于或等于0即可,列不等式求解;(Ⅱ)先求出二次函数的对称轴,看看所给的闭区间与对称轴的关系,分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324128371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324191370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324128371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324222688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324191370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324284784.png)
试题解析:(Ⅰ)依题意,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324300566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324315293.png)
即方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324347858.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324362840.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324128371.png)
(Ⅱ)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024323972806.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324409383.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324440461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324128371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324471945.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324144369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324081287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324128371.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324144369.png)
② 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324565474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324191370.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324596643.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324191370.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324627642.png)
综上,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324144369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024324159549.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目