题目内容

已知函数.
(Ⅰ)若的值域;
(Ⅱ)若存在实数,当恒成立,求实数的取值范围.
(I)当时, 的值域为:.当时,的值域为:.当时,的值域为:.(II).

试题分析:(I)由于的范围含有参数,故结合抛物线的图象对分情况进行讨论.
(II)由恒成立得:恒成立,
则只需的最大值小于等于0.
由此得:,令
则原题可转化为:存在,使得.这又需要.接下来又对二次函数分情况讨论,从而求出实数的取值范围.
试题解析:(I)由题意得:
时,
∴此时的值域为:     2分
时,
∴此时的值域为:      4分
时,
∴此时的值域为:    6分
(II)由恒成立得:恒成立,
因为抛物线的开口向上,所以,由恒成立知:                8分
化简得:  令
则原题可转化为:存在,使得  即:当  10分
的对称轴: 
 即:时,
解得:
②当 即:时,
解得:
综上:的取值范围为:                13分
法二:也可
化简得: 有解.
,则.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网