题目内容
【题目】某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示.
现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.
【答案】
【解析】
根据图形求出参加兴趣小组的总人数,求出至少2个小组(只参数2个小组或参加3个小组)的人数,再求出不超过2个小组(即不是3个小组)的人数,然后可得概率.
由图形可得参加兴趣小组的总人数是60,参加3个小组的有8人,只参加2个小组的有28人,
至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为
P=;
“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.
故他属于不超过2个小组的概率是P=1-.
故答案为:;..
【题目】甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:
班级 | 参赛人数 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 45 | 83 | 86 | 85 | 82 |
乙 | 45 | 83 | 84 | 85 | 133 |
某同学分析上表后得到如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数少于甲班优秀的人数(竞赛得分分为优秀);
③甲、乙两班成绩为85分的学生人数比成绩为其他值的学生人数多;
④乙班成绩波动比甲班小.
其中正确结论有( )
A.1个B.2个C.3个D.4个
【题目】在“创文创卫”活动中,某机构为了解一小区成年居民“吸烟与性别”是否有关.从该小区中随机抽取200位成年居民,得到下边列联表:已知在全部200人中随机抽取1人,抽到不吸烟的概率为0.75.
吸烟 | 不吸烟 | 合计 | |
男 | 40 | ||
女 | 90 | ||
合计 | 200 |
(1)补充上面的列联表,并判断:能否有99.9%的把握认为“吸烟与性别”有关;
(2)用分层抽样的方法从吸烟居民中选5人出来,然后再从中抽2人出来,给小区居民谈谈吸烟的危害性,求恰好抽到“一男一女”的概率.
参考公式: .
参考数据:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |