题目内容
【题目】如图,已知平面,四边形为矩形,四边形为直角梯形,,AB∥CD,,.
(1)求证:平面;
(2)求三棱锥的体积.
【答案】(1)见解析;(2)
【解析】
(1)过点作,垂足为,利用勾股定理证明,利用平面,证明,即可证明平面;
(2)证得平面,利用,即可求解的体积.
(1)证明:过点C作CM⊥AB,垂足为M,因为AD⊥DC,
所以四边形ADCM为矩形,所以AM=MB=2,
又AD=2,AB=4,所以AC=2,CM=2,BC=2,
所以AC2+BC2=AB2,所以AC⊥BC,因为AF⊥平面ABCD,AF∥BE,
所以BE⊥平面ABCD,所以BE⊥AC.
又BE平面BCE,BC平面BCE,且BE∩BC=B,
所以AC⊥平面BCE.
(2)因为AF⊥平面ABCD,所以AF⊥CM,
又CM⊥AB,AF平面ABEF,
AB平面ABEF,AF∩AB=A,所以CM⊥平面ABEF.
VE-BCF=VC-BEF=××BE×EF×CM=×2×4×2=.
练习册系列答案
相关题目