题目内容
【题目】已知圆的方程为,圆与直线相交于两点,且(为坐标原点),则实数的值为( )
A. B. C. D.
【答案】A
【解析】
将直线方程代入圆的方程,利用韦达定理,以AB为直径的圆过原点即OA⊥OB,x1x2+y1y2=0,可得关于a的方程,即可求解.
由直线x+2y﹣4=0与圆x2+y2﹣2x﹣4y+a=0,消去y,得5x2﹣8x﹣16+4a=0①
设直线l和圆C的交点为A (x1,y1),B(x2,y2),则x1、x2是①的两个根.
∴x1x2=,x1+x2=. ②
由题意有:OA⊥OB,即x1x2+y1y2=0,
∴x1x2+(4﹣x1)(4﹣x2)=0,即x1x2﹣(x1+x2)+4=0③
将②代入③得:a=.
故选:A.
【题目】自贡某个工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示如图所示,已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元.
(Ⅰ)求该企业2016年一年生产一件产品的利润的分布列和期望;
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2= .
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
优秀 | 合格 | 合计 | |
大学组 | |||
中学组 | |||
合计 |
注:,其中.
0.10 | 0.05 | 0.005 | |
2.706 | 3.841 | 7.879 |
(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.
(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.
【题目】[选修4-5:不等式选讲]
已知函数f(x)=x+1+|3﹣x|,x≥﹣1.
(I)求不等式f(x)≤6的解集;
(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.