题目内容
【题目】已知函数f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e为自然对数的底数,若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是( )
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)
【答案】A
【解析】解:∵f(1)=0,∴e2﹣a﹣b﹣1=0,即b=e2﹣a﹣1, ∴f(x)=e2x﹣ax2+(e2﹣a﹣1)x﹣1,
∴f′(x)=2e2x﹣2ax+e2﹣a﹣1,
令f′(x)=0得2e2x=2ax+a+1﹣e2 ,
∵函数f′(x)在区间(0,1)内有两个零点,
∴y=2e2x与y=2ax+a+1﹣e2的函数图象在(0,1)上有两个交点,
作出y=2e2x与y=2ax+a+1﹣e2的函数图象,如图所示:
当a+1﹣e2≥2即a≥e2+1时,直线y=2ax与y=2e2x最多只有1个交点,不符合题意;
∴a+1﹣e2<2,即a<e2+1,
排除B,C,D.
故选A.
利用f(1)=0得出a,b的关系,根据f′(x)=0有两解可知y=2e2x与y=2ax+a+1﹣e2的函数图象在(0,1)上有两个交点,做出两函数图象,根据图象判断a的范围.
练习册系列答案
相关题目
【题目】某项科研活动共进行了5次试验,其数据如表所示:
特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
x | 555 | 559 | 551 | 563 | 552 |
y | 601 | 605 | 597 | 599 | 598 |
(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;
(Ⅱ)求特征量y关于x的线性回归方程 ;并预测当特征量x为570时特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为 = , )