题目内容
【题目】动圆P过点,且与直线相切,设动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)过点F的直线交曲线C于A,B两个不同的点,过点A,B分别作曲线C的切线,且二者相交于点M,若直线的斜率为,求直线的方程.
【答案】(1)(2)
【解析】
(1)设出圆心的坐标,建立方程,计算轨迹,即可。(2)设出直线AB的方程,代入抛物线方程,计算出直线AM和直线BM的方程,相减,得到M点坐标,结合直线的斜率为,计算k,得到直线AB的方程。
(1)设点,则
平方整理得:
(2)由题意可知直线的斜率一定存在,否则不与曲线有两个交点
设方程为,且设点
得
则得
由得:,所以
∴直线AM的方程为: ①
直线BM的方程为:②
①-②得:,
又,
解得,,所以
又,所以直线的斜率为,解得
直线的方程为
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积(单位:亩) | 1 | 2 | 3 | 4 | 5 |
管理时间(单位:月) | 8 | 10 | 13 | 25 | 24 |
并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?
(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?
(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望。
参考公式:
其中。临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考数据:
【题目】某工科院校对A、B两个专业的男、女生人数进行调查统计,得到以下表格:
专业A | 专业B | 合计 | |
女生 | 12 | ||
男生 | 46 | 84 | |
合计 | 50 | 100 |
如果认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过( )
注:
P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 0.005B. 0.01C. 0.025D. 0.05