题目内容
【题目】以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.
(1)求曲线的极坐标方程,并化为直角坐标方程;
(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.
【答案】(1),;(2).
【解析】
(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;
(2)设点对应的参数分别为,则,,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,,则,求得取最小值时符合的条件,进而求得直线的普通方程.
(1)设点极坐标分别为,,
因为,则,
所以曲线的极坐标方程为,
两边同乘,得,
所以的直角坐标方程为,即.
(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.
由韦达定理得,,
所以,当且仅当时,等号成立,则,
所以当取得最小值时,直线的普通方程为.
练习册系列答案
相关题目