题目内容
16.已知正项数列{an}满足a1=1,$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$$+\frac{{a}_{n}}{(n+1)^{2}}$,n∈N*.(Ⅰ)试比较an与an+1的大小,并说明理由;
(Ⅱ)求证:$\frac{1}{n+1}$$-\frac{1}{n+2}$$<\frac{1}{\sqrt{{a}_{n}}}$$-\frac{1}{\sqrt{{a}_{n+1}}}$$<\frac{1}{(n+1)^{2}}$.
分析 (I)由$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$$+\frac{{a}_{n}}{(n+1)^{2}}$,n∈N*,可得$\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}}$=$\frac{{a}_{n}}{(n+1)^{2}}$>0,即可得出.
(II)利用$\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$=$\frac{{a}_{n}}{(n+1)^{2}\sqrt{{a}_{n}{a}_{n+1}}}$=$\frac{1}{(n+1)^{2}}$$•\sqrt{\frac{{a}_{n}}{{a}_{n+1}}}$,可证明:$\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$<$\frac{1}{(n+1)^{2}}$.
再证明:左边.由于$\frac{1}{\sqrt{{a}_{1}}}-\frac{1}{\sqrt{{a}_{n+1}}}$=$(\frac{1}{\sqrt{{a}_{1}}}-\frac{1}{\sqrt{{a}_{2}}})+(\frac{1}{\sqrt{{a}_{2}}}-\frac{1}{\sqrt{{a}_{3}}})$+…+$(\frac{1}{\sqrt{{a}_{n}}}-\frac{1}{\sqrt{{a}_{n+1}}})$,可得$\sqrt{{a}_{n+1}}$<n+1.而$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$+$\frac{{a}_{n}}{(n+1)^{2}}$=$\sqrt{{a}_{n}}[1+\frac{\sqrt{{a}_{n}}}{(n+1)^{2}}]$,可得$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$=1+$\frac{\sqrt{{a}_{n}}}{(n+1)^{2}}$,$\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$=$\frac{1}{(n+1)(n+1+\frac{\sqrt{{a}_{n}}}{n+1})}$,可得当n≥2时,$\frac{\sqrt{{a}_{n}}}{n+1}<\frac{\sqrt{{a}_{n}}}{n}$<1.即可证明.
解答 (I)解:∵$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$$+\frac{{a}_{n}}{(n+1)^{2}}$,n∈N*,
∴$\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}}$=$\frac{{a}_{n}}{(n+1)^{2}}$>0,
∴$\sqrt{{a}_{n+1}}$>$\sqrt{{a}_{n}}$,化为an+1>an.
(II)证明:先证明:$\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$<$\frac{1}{(n+1)^{2}}$.
$\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$=$\frac{\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n}{a}_{n+1}}}$=$\frac{{a}_{n}}{(n+1)^{2}\sqrt{{a}_{n}{a}_{n+1}}}$=$\frac{1}{(n+1)^{2}}$$•\sqrt{\frac{{a}_{n}}{{a}_{n+1}}}$<$\frac{1}{(n+1)^{2}}$.
再证明:$\frac{1}{n+1}-\frac{1}{n+2}$<$\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$.
∵$\frac{1}{\sqrt{{a}_{1}}}-\frac{1}{\sqrt{{a}_{n+1}}}$=$(\frac{1}{\sqrt{{a}_{1}}}-\frac{1}{\sqrt{{a}_{2}}})+(\frac{1}{\sqrt{{a}_{2}}}-\frac{1}{\sqrt{{a}_{3}}})$+…+$(\frac{1}{\sqrt{{a}_{n}}}-\frac{1}{\sqrt{{a}_{n+1}}})$$<\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{(n+1)^{2}}$<$\frac{1}{1×2}+\frac{1}{2×3}$+…+$\frac{1}{n(n+1)}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$,
∴$\sqrt{{a}_{n+1}}$<n+1.
而$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$+$\frac{{a}_{n}}{(n+1)^{2}}$=$\sqrt{{a}_{n}}[1+\frac{\sqrt{{a}_{n}}}{(n+1)^{2}}]$,∴$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$=1+$\frac{\sqrt{{a}_{n}}}{(n+1)^{2}}$,
∴$\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$=$\frac{{a}_{n}}{(n+1)^{2}\sqrt{{a}_{n}{a}_{n+1}}}$=$\frac{1}{(n+1)^{2}•\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}}$=$\frac{1}{(n+1)^{2}[1+\frac{\sqrt{{a}_{n}}}{(n+1)^{2}}]}$=$\frac{1}{(n+1)(n+1+\frac{\sqrt{{a}_{n}}}{n+1})}$,
当n≥2时,$\frac{\sqrt{{a}_{n}}}{n+1}<\frac{\sqrt{{a}_{n}}}{n}$<1.
∴$\frac{1}{\sqrt{{a}_{n}}}$-$\frac{1}{\sqrt{{a}_{n+1}}}$>$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$.
综上可得:$\frac{1}{n+1}$$-\frac{1}{n+2}$$<\frac{1}{\sqrt{{a}_{n}}}$$-\frac{1}{\sqrt{{a}_{n+1}}}$$<\frac{1}{(n+1)^{2}}$.
点评 本题考查了数列的递推式及其通项公式的应用、“放缩法”、不等式的性质,考查了变形能力、推理能力与计算能力,属于中档题.
A. | ($\frac{7}{24}$,$\frac{2}{3}$] | B. | [$\frac{2}{3}$,+∞) | C. | ($\frac{1}{3}$,$\frac{2}{3}$] | D. | (0,$\frac{7}{24}$) |
A. | -5 | B. | -$\frac{2}{5}$ | C. | -$\frac{3}{2}$ | D. | 5 |
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 3 | 7 | 5 | 9 | 6 | 1 |