题目内容
7.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则( )A. | $\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=1 | B. | $\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2 | C. | $\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=1 | D. | $\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=2 |
分析 以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.
解答 解:以AB所在直线为x轴,其中点为原点,建立坐标系,
则A(-1,0),B(1,0),C(1+cosθ,sinθ),
所以AC=$\sqrt{(1+cosθ+1)^{2}+si{n}^{2}θ}$=$\sqrt{5+4cosθ}$,
对于椭圆而言,2c=2,2a=AC+BC=$\sqrt{5+4cosθ}$+1,
所以$\frac{1}{{e}_{1}}$=$\frac{a}{c}$=$\frac{\sqrt{5+4cosθ}+1}{2}$;
对于双曲线而言,2c=2,2a=AC-BC=$\sqrt{5+4cosθ}$-1,
所以$\frac{1}{{e}_{2}}$=$\frac{a}{c}$=$\frac{\sqrt{5+4cosθ}-1}{2}$;
故$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=$\frac{\sqrt{5+4cosθ}+1}{2}$-$\frac{\sqrt{5+4cosθ}-1}{2}$=1,
故选:A.
点评 本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.
练习册系列答案
相关题目
2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的左焦点为F,右顶点为A,点P在椭圆上,直线AP交y轴于点M,若$\overrightarrow{PF}$=$\sqrt{3}\overrightarrow{MO}$(O为坐标原点),则椭圆的离心率是( )
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{3}-1$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{3}$ |
17.“α≠2kπ+$\frac{π}{2}$(k∈Z)”是“tanα=$\frac{sinα}{cosα}$”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |