ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬F1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬Ö±Ïßl¹ýµãF2ÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬ÇÒ¡÷F1ABµÄÖܳ¤Îª4$\sqrt{2}$£®£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚÖ±Ïßlʹ¡÷F1ABµÄÃæ»ýΪ$\frac{4}{3}$£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÔËÓÃÀëÐÄÂʹ«Ê½ºÍÍÖÔ²µÄ¶¨Ò壬¿ÉµÃa£¬c£¬Çó³öb£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©¼ÙÉè´æÔÚÖ±Ïßl£¬Ê¹¡÷F1ABµÄÃæ»ýΪ$\frac{4}{3}$£®Çó³öÍÖÔ²$\frac{{x}^{2}}{2}$+y2=1µÄ½¹µã£¬ÉèÖ±Ïßl£ºx=1»òy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬ÔËÓÃΤ´ï¶¨Àí£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ýΪ$\frac{1}{2}$¡Á2¡Á|y1-y2|=$\frac{4}{3}$£¬½â·½³Ì¼´¿ÉµÃµ½k£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬
ÓÉ¡÷F1ABµÄÖܳ¤Îª4$\sqrt{2}$£¬¸ù¾ÝÍÖÔ²µÄ¶¨Òå¿ÉµÃ
4a=4$\sqrt{2}$£¬
½âµÃa=$\sqrt{2}$£¬
¼´ÓÐc=1£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
ÔòÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£»
£¨2£©¼ÙÉè´æÔÚÖ±Ïßl£¬Ê¹¡÷F1ABµÄÃæ»ýΪ$\frac{4}{3}$£®
ÓÉÍÖÔ²$\frac{{x}^{2}}{2}$+y2=1µÄ½¹µãΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬
ÉèÖ±Ïßl£ºx=1»òy=k£¨x-1£©£¬
µ±x=1ʱ£¬y=$¡À\frac{\sqrt{2}}{2}$£¬|AB|=$\sqrt{2}$£¬
¡÷F1ABµÄÃæ»ýΪ$\frac{1}{2}¡Á2¡Á\sqrt{2}$=$\sqrt{2}$£¬²»³ÉÁ¢£»
ÓÉy=k£¨x-1£©´úÈëÍÖÔ²·½³ÌµÃ£¬
£¨1+2k2£©x2-4k2x-2+2k2=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬
¼´ÓÐ|x1-x2|=$\sqrt{£¨\frac{4{k}^{2}}{1+2{k}^{2}}£©^{2}-\frac{8{k}^{2}-8}{1+2{k}^{2}}}$=$\frac{\sqrt{8£¨1+{k}^{2}£©}}{1+2{k}^{2}}$
Ôò|y1-y2|=|k|•|x1-x2|=|k|•$\frac{\sqrt{8£¨1+{k}^{2}£©}}{1+2{k}^{2}}$£¬
¼´ÓС÷F1ABµÄÃæ»ýΪ$\frac{1}{2}$¡Á2¡Á|y1-y2|=$\frac{4}{3}$£¬
½âµÃk2=1»ò-2£¨ÉáÈ¥£©£®
¼´ÓÐk=¡À1£®
¹Ê´æÔÚÖ±Ïßl£ºy=¡À£¨x-1£©£¬Ê¹¡÷F1ABµÄÃæ»ýΪ$\frac{4}{3}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¡¢·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²é¶¨Òå·¨ºÍÖ±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬Í¬Ê±¿¼²éÈý½ÇÐεÄÃæ»ýµÄÇ󷨣¬ÊôÓÚÖеµÌ⣮
A£® | 5 | B£® | 6 | C£® | $\frac{90}{17}$ | D£® | 7 |
A£® | 1 | B£® | 3 | C£® | 6 | D£® | 10 |
A£® | $\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=1 | B£® | $\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2 | C£® | $\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=1 | D£® | $\frac{1}{{{e}_{1}}^{2}}$-$\frac{1}{{{e}_{2}}^{2}}$=2 |